698 research outputs found

    Thermo-visual feature fusion for object tracking using multiple spatiogram trackers

    Get PDF
    In this paper, we propose a framework that can efficiently combine features for robust tracking based on fusing the outputs of multiple spatiogram trackers. This is achieved without the exponential increase in storage and processing that other multimodal tracking approaches suffer from. The framework allows the features to be split arbitrarily between the trackers, as well as providing the flexibility to add, remove or dynamically weight features. We derive a mean-shift type algorithm for the framework that allows efficient object tracking with very low computational overhead. We especially target the fusion of thermal infrared and visible spectrum features as the most useful features for automated surveillance applications. Results are shown on multimodal video sequences clearly illustrating the benefits of combining multiple features using our framework

    On Probabilistic Applicative Bisimulation and Call-by-Value λ\lambda-Calculi (Long Version)

    Get PDF
    Probabilistic applicative bisimulation is a recently introduced coinductive methodology for program equivalence in a probabilistic, higher-order, setting. In this paper, the technique is applied to a typed, call-by-value, lambda-calculus. Surprisingly, the obtained relation coincides with context equivalence, contrary to what happens when call-by-name evaluation is considered. Even more surprisingly, full-abstraction only holds in a symmetric setting.Comment: 30 page

    Graph Mining for Object Tracking in Videos

    No full text
    International audienceThis paper shows a concrete example of the use of graph mining for tracking objects in videos with moving cameras and without any contextual information on the objects to track. To make the mining algorithm efficient, we benefit from a video representation based on dy- namic (evolving through time) planar graphs. We then define a number of constraints to efficiently find our so-called spatio-temporal graph pat- terns. Those patterns are linked through an occurrences graph to allow us to tackle occlusion or graph features instability problems in the video. Experiments on synthetic and real videos show that our method is effec- tive and allows us to find relevant patterns for our tracking application

    Superpixel quality in microscopy images: the impact of noise & denoising

    Get PDF
    Microscopy is a valuable imaging tool in various biomedical research areas. Recent developments have made high resolution acquisition possible within a relatively short time. State-of-the-art imaging equipment such as serial block-face electron microscopes acquire gigabytes of data in a matter of hours. In order to make these amounts of data manageable, a more data-efficient representation is required. A popular approach for such data efficiency are superpixels which are designed to cluster homogeneous regions without crossing object boundaries. The use of superpixels as a pre-processing step has shown significant improvements in making computationally intensive computer vision analysis algorithms more tractable on large amounts of data. However, microscopy datasets in particular can be degraded by noise and most superpixel algorithms do not take this artifact into account. In this paper, we give a quantitative and qualitative comparison of superpixels generated on original and denoised images. We show that several advanced superpixel techniques are hampered by noise artifacts and require denoising and parameter tuning as a pre-processing step. The evaluation is performed on the Berkeley segmentation dataset as well as on fluorescence and scanning electron microscopy data

    Area-energy aware dataflow optimisation of visual tracking systems

    Get PDF
    This paper presents an orderly dataflow-optimisation approach suitable for area-energy aware computer vision applications on FPGAs. Vision systems are increasingly being deployed in power constrained scenarios, where the dataflow model of computation has become popular for describing complex algorithms. Dataflow model allows processing datapaths comprised of several independent and well defined computations. However, compilers are often unsuccessful in identifying domain-specific optimisation opportunities resulting in wasted resources and power consumption. We present a methodology for the optimisation of dataflow networks, according to patterns often found in computer vision systems, focusing on identifying optimisations which are not discovered automatically by an optimising compiler. Code transformation using profiling and refactoring provides opportunities to optimise the design, targeting FPGA implementations and focusing on area and power abatement. Our refactoring methodology, applying transformations to a complex algorithm for visual tracking resulted in significant reduction in power consumption and resource usage

    Learning Rotation Adaptive Correlation Filters in Robust Visual Object Tracking

    Full text link
    Visual object tracking is one of the major challenges in the field of computer vision. Correlation Filter (CF) trackers are one of the most widely used categories in tracking. Though numerous tracking algorithms based on CFs are available today, most of them fail to efficiently detect the object in an unconstrained environment with dynamically changing object appearance. In order to tackle such challenges, the existing strategies often rely on a particular set of algorithms. Here, we propose a robust framework that offers the provision to incorporate illumination and rotation invariance in the standard Discriminative Correlation Filter (DCF) formulation. We also supervise the detection stage of DCF trackers by eliminating false positives in the convolution response map. Further, we demonstrate the impact of displacement consistency on CF trackers. The generality and efficiency of the proposed framework is illustrated by integrating our contributions into two state-of-the-art CF trackers: SRDCF and ECO. As per the comprehensive experiments on the VOT2016 dataset, our top trackers show substantial improvement of 14.7% and 6.41% in robustness, 11.4% and 1.71% in Average Expected Overlap (AEO) over the baseline SRDCF and ECO, respectively.Comment: Published in ACCV 201

    Online, Real-Time Tracking Using a Category-to-Individual Detector

    Get PDF
    A method for online, real-time tracking of objects is presented. Tracking is treated as a repeated detection problem where potential target objects are identified with a pre-trained category detector and object identity across frames is established by individual-specific detectors. The individual detectors are (re-)trained online from a single positive example whenever there is a coincident category detection. This ensures that the tracker is robust to drift. Real-time operation is possible since an individual-object detector is obtained through elementary manipulations of the thresholds of the category detector and therefore only minimal additional computations are required. Our tracking algorithm is benchmarked against nine state-of-the-art trackers on two large, publicly available and challenging video datasets. We find that our algorithm is 10% more accurate and nearly as fast as the fastest of the competing algorithms, and it is as accurate but 20 times faster than the most accurate of the competing algorithms

    HopScotch - a low-power renewable energy base station network for rural broadband access

    Get PDF
    The provision of adequate broadband access to communities in sparsely populated rural areas has in the past been severely restricted. In this paper, we present a wireless broadband access test bed running in the Scottish Highlands and Islands which is based on a relay network of low-power base stations. Base stations are powered by a combination of renewable sources creating a low cost and scalable solution suitable for community ownership. The use of the 5~GHz bands allows the network to offer large data rates and the testing of ultra high frequency ``white space'' bands allow expansive coverage whilst reducing the number of base stations or required transmission power. We argue that the reliance on renewable power and the intelligent use of frequency bands makes this approach an economic green radio technology which can address the problem of rural broadband access
    corecore